Mobile Communications TCS 455

Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 11

Office Hours:
BKD 3601-7
Tuesday 14:00-16:00
Thursday 9:30-11:30

Announcements

- Read
- Chapter 3: 3.1 - 3.2, 3.5.1, 3.6, 3.7.2
- Posted on the web
- Appendix A. 1 (Erlang B)

Big Picture

$S=$ total \# available duplex radio channels for the system
Frequency reuse with cluster size N

Assumption

- Blocked calls cleared
- Offers no queuing for call requests.
- For every user who requests service, it is assumed there is no setup time and the user is given immediate access to a channel if one is available.
- If no channels are available, the requesting user is blocked without access and is free to try again later.
- Calls arrive as determined by a Poisson process.
- There are memoryless arrivals of requests, implying that all users, including blocked users, may request a channel at any time.
- There are an infinite number of users (with finite overall request rate).
- The finite user results always predict a smaller likelihood of blocking. So, assuming infinite number of users provides a conservative estimate.
- The duration of the time that a user occupies a channel is exponentially distributed, so that longer calls are less likely to occur.
- There are m channels available in the trunking pool.
- For us, $m=$ the number of channels for a cell (C) or for a sector

Assumption (2)

The call request process is Poisson with rate λ

We want to find out what proportion of time the system has $K=m$.

Small Slot Analysis

Suppose each slot duration is δ.

- Consider the $i^{\text {th }}$ small slot.
- Let $K_{\mathrm{i}}=\mathrm{k}$ be the value of K at the beginning of this time slot.
- $\quad k=2$ in the above figure.
- Then, $K_{\mathrm{i}+1}$ is the value of K at the end of this slot which is the same as the value of K at the beginning of the next slot.
- $\mathrm{P}[0$ new call request $] \approx 1-\lambda \delta$
- $\quad \mathrm{P}[1$ new call request $] \approx \lambda \delta$
- $\mathrm{P}[0$ old-call end $\left.] \approx(1-\mu \delta)^{k} \approx 1-k \mu \delta \quad\right\rangle$ How do these events affect $K_{\mathrm{i}+1}$?
- $\mathrm{P}[1$ old-call end $] \approx k \mu \delta(1-\mu \delta)^{k-1} \approx k \mu \delta$

Small slot Analysis (2)

$$
\mathrm{K}_{\mathrm{i}+1}=\mathrm{K}_{\mathrm{i}}+(\# \text { new call request })-(\# \text { old-call end })
$$

The labels on the arrows are probabilities.
$\mathrm{P}[0$ new call request $] \approx 1-\lambda \delta$ $\mathrm{P}[1$ new call request $] \approx \lambda \delta$
$\mathrm{P}[0$ old-call end $] \approx 1-k \mu \delta$ $\mathrm{P}[1$ old-call end $] \approx k \mu \delta$

Small slot Analysis: Markov Chain

- Case: $\mathrm{m}=2$

Markov Chain

- Markov chains model many phenomena of interest.
- We will see one important property: Memoryless
- It retains no memory of where it has been in the past.
- Only the current state of the process can influence where it goes next.
- Very similar to the state transition diagram in digital circuits.
- In digital circuit, the labels on the arrows indicate the input/control signal.
- Here, the labels on the arrows indicate transition probabilities. (If the system is currently at a particular state, where would it go next on the next time slot?)
- We will focus on discrete time Markov chain.

Example: The Land of Oz

- Land of Oz is blessed by many things, but not by good weather.
- They never have two nice days in a row.
- If they have a nice day, they are just as likely to have snow as rain the next day.
- If they have snow or rain, they have an even chance of having the same the next day.
- If there is change from snow or rain, only half of the time is this a change to a nice day.
- If you visit the land of Oz next year for one day, what is the chance that it will be a nice day?

The Land of Oz: Transition Matrix

$$
\begin{gathered}
\left.\quad \begin{array}{c}
\mathrm{R} \\
\mathrm{~N}\left[\begin{array}{ccc}
\mathrm{R} & \mathrm{~N} & \mathrm{~S} \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2}
\end{array}\right] \\
\\
\\
\\
\\
\\
\\
\\
\end{array}\right]\left[K_{i+1}=\operatorname{rain} \mid K_{i}=\text { normal }\right]
\end{gathered}
$$

